
A Web-Based Application to Support Applied Bayesian Data
Analysis

James Uanhoro
Quantitative Research, Evaluation & Measurement

Department of Educational Studies, Ohio State University

Abstract
I present a freely accessible web-based Bayesian data analysis application
built on the Stan computation engine. The goal of the application is to
make Bayesian data analysis accessible while demonstrating two practices
of applied Bayesian data analysis. The first practice is that of including
subjective prior information in data analysis. The second practice is
communicating study effects probabilistically using posterior samples. To
demonstrate these practices, the application elicits prior information from
the user and returns plots that communicate effects probabilistically. The
application implements two-group comparisons for: unbounded continuous
outcomes (t-regression and quantile regression); bounded continuous out-
comes (beta regression); and binary outcomes (binomial regression). The
application is under continuous development; by the date of presentation,
the application will include additional techniques.

Link to application: https://www.jamesuanhoro.com/project/bms/

Notation in text:
y: continuous variable; x: binary variable

(
x ∈ {0, 1}

)
;

Φ(·): Standard normal quantile function
Generative models always follow mean-scale notation.

Words in text: 1993

Introduction

Bayesian estimation is an increasingly common approach to data analysis in the social

sciences. An appealing justification for Bayesian methods is that stated by Kruschke (2013):

a Bayesian analysis provides a rich description of parameters of interest relative to the

information provided by analogous frequentist analysis. A challenge to greater adoption of

https://www.jamesuanhoro.com/project/bms/
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Bayesian data analysis is that the majority of Bayesian statistical packages are script-based.

This increases the burden on substantive researchers. Another challenge to widespread

adoption is one many advocates of Bayesian methods have heard: “how do I choose the

prior?”

In this paper, I present a web-based application that attempts to make Bayesian

methods accessible to substantive researchers. The operation of the application is grounded

in two beliefs:

1. The diligent researcher always has prior information, although a data analyst may be

required to translate this information into a prior distribution.

2. One should communicate model insights probabilistically using posterior samples (dis-

tributions) of parameters.

These beliefs stem from a subjective Bayesian approach (Goldstein, 2006), and an

interest in encouraging practices that scale to complex problems. Specific practices that

follow from these beliefs are:

1. I match the expected range of parameters to the 95% quantile interval of distributions

for specifying prior distributions (Greenland, 2006).

2. I emphasize posterior samples (distributions) for communicating study results, and

de-emphasize Bayes factors. Bayes factors are a common recommendation in quantita-

tive psychology (e.g. Dienes & Mclatchie, 2018; Morey, Rouder, Verhagen, & Wagen-

makers, 2014; Schönbrodt, Wagenmakers, Zehetleitner, & Perugini, 2015). However,

Bayes factors are not readily scalable (Gelman & Rubin, 1995), unlike posterior sam-

ples which are always available.

The application sits atop Stan (Carpenter et al., 2017), accessed via Python. Stan

uses the No-U-Turn sampler allowing for highly efficient posterior sampling (Hoffman &

Gelman, 2014). In the next section, I outline the statistical models implemented in the

application, and conclude with a demonstration comparing faculty salaries by gender.
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Outline of statistical models

Heteroskedastic t−regression: Two−group comparison for unbounded continu-

ous data

For continuous outcome y with binary group membership x, I adopt the Bayesian

t−regression model by Kruschke (2013), which allows for outliers in the data and het-

eroskedasticity by group membership:

y ∼ t
(
ν, α+ βx, eδ+γx

)
(1)

where ν is the degrees of freedom of the t distribution − smaller values of ν imply

outliers in y. The scale equation is on the log-scale to ensure the scale is always positive.

For priors, I assume:

ν ∼ Gamma(shape = 1, rate = 0.1), α ∼ Cauchy(0, sα = 5), δ ∼ t(3, 0, sδ = 1)

β ∼ N
(
0, sβ = uβ

/
Φ−1(0.975)

)
, γ ∼ N

(
0, sγ = ln(uγ)

/
Φ−1(0.975)

) (2)

The gamma prior on ν assumes a 95% quantile interval of (0.25, 36.9), permitting

distributions of the data that range from pathological (ν ≤ 1) to near-normality (ν > 30)

(Ding, 2014). α and δ are intercepts for the mean and log-scale respectively. I assign them

large-variance priors as the researcher may not have much information on the intercepts

(group mean) themselves.

However, diligent and experienced researchers will have expectations for the differ-

ences between groups. The user is asked for the largest difference between both groups they

would find believable (uβ). By setting sβ = uβ
/

Φ−1(0.975) = uβ
/

1.96, we define a scale

for β that a-priori assumes a 95% chance that β lies in the (−uβ,uβ) range, based on the

empirical rule.

The user is also asked for a maximum ratio of both group standard deviations, uγ .

I set sγ = ln(uγ)
/

Φ−1(0.975). The log transformation on uγ transforms the ratio to an
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additive operation and dividing the log-transformed value by Φ−1(0.975) a-priori assumes

a 95% chance that γ falls in the
(
− ln(uγ), ln(uγ)

)
range.

The user is required to select a number of iterations between 1000 and 2000. The

application runs the set number of iterations across 4 chains. The first half of iterations are

used to warm-up the sampler, the final half are retained for posterior inference. The user

also has to enter a desired quantile interval for summarizing inference (95% by default).

Heteroskedastic quantile regression: Two−group comparison for unbounded

continuous data

I adopt the Bayesian quantile regression model by Yu and Moyeed (2001) which

is based on the asymmetric Laplace distribution (ALD). The ALD permits location-scale

modeling at a specific percentile of the outcome. The ability to test group differences at

specific percentiles can be substantively important. For example, an intervention may target

students with low proficiency in a particular subject, but the intervention is delivered to

students at all levels of proficiency. In such an instance, testing the treatment effect at a

lower percentile better assesses the intervention than a test of mean differences.

The Bayesian model is:

y ∼ ALD
(
α+ βx, eδ+γx, p

)
(3)

where α + βx and δ + γx are the models for the mean and log-scale respectively,

while p is the percentile of interest provided by the researcher. The model makes the same

assumptions about priors as in equation 2, requesting user inputs for differences in group

means and the ratio of group standard deviations.

Beta regression: Two−group comparison for bounded continuous data

Beta regression (Smithson & Verkuilen, 2006) is a flexible regression model for

bounded continuous data. Bounded data are commonplace in educational settings, most

commonly in the form of test scores, GPA. Additional examples include percentages and
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averaged Likert scores. Although, one may analyze bounded data using models that ignore

the bounds (e.g. normal and t distributions), this practice of ignoring the bounds can result

misleading inference especially when the data are clustered at the bounds. An example is

analyzing an outcome with a marked ceiling or floor effect.

Prior to analysis, the data are first re-scaled to the unit interval (0, 1) using the

formula: y′ =
(
y−min(y)

)
/
(
max(y)−min(y)

)
, where the minimum and maximum values

are based on the range of the response scale not the sample statistics. The re-scaling

ensures that the data are probabilities. Secondly, the beta distribution assumes the data

fall between 0 and 1 (exclusive). Hence, if there are 0 and/or 1 values after re-scaling the

data to the unit interval, I implement a common re-scaling (Smithson & Verkuilen, 2006):

y′′ = [y′(N − 1) + 1/2]/N , where N is the total sample size.

After the data are transformed, the Bayesian model is:

y′′ ∼ beta(p0 + pdx, κ[x+1]) (4)

where the beta distribution is parameterized by the mean and sample size (Kruschke,

2011). p0 is the average probability when x = 0 (the intercept) and pd is the difference

in probabilities between both groups. κ is the sample size parameter which is different for

both groups. For priors, I assume:

κ ∼ Gamma(2, .1), p0 ∼ beta(u0, u0)

pd ∼ N
(
0, u′d

/
Φ−1(0.975)

)
, u′d = ud/

(
max(y)−min(y)

) (5)

The sample size parameter is set up to permit a large variety of positive values.

If the user suggests that the data are extreme and close to the bounds, u0 is set to 1

permitting a flat prior on p0. Otherwise, u0 is set to 2, such that there is increasingly lower

prior probability on extreme values for p0. The user provides an estimate of the maximum

difference between the groups, ud. This value is re-scaled to the unit interval (u′d) and the
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empirical rule is again used to construct the prior, such that there is a 95% chance that

pd lies between (−u′d, u′d). Finally, the estimated group means, as well as the difference

between groups, are converted back to the original scale and returned to the user.

Binomial logistic regression: Two−group comparison for binary data

For binary outcomes, I utilize a simple binomial logistic regression model:

s1

s2

 ∼ Binomial


t1
t2

 ,

(
1 + e−(α+β)

)−1

(1 + e−α)−1


 (6)

where s1 and s2 are the number of successes for groups 1 and 2 out of t1 and t2 trials

respectively. α is the expected log-odds of success for group 2, while β is the difference

between group 1 and group 2 on the log-odds scale.

For priors, I assume: α ∼ N (0, sα) and β ∼ N (0, sβ); sα and sβ are based on user

input. The user is asked if the event is known to be an extreme event. For extreme events,

we set sα = 5, such that the average probability of success for group 2 is a-priori assumed

to have a near 0 lower and near 1 upper limit. Otherwise, we set sα = 2 such that the

average probability of success for group 2 is assumed to have a 95% a-prior interval of(
(0.019, .981), inv-logit

(
Φ−1(.975)× 2

))
.

Next, the program requires that the user set an upper limit for the odds ratio (uβ).

The program recommends 2 for outcomes that are difficult to change or for controversial

interventions and 10 for relations that are obvious. I set sβ = ln(uβ)
/

Φ−1(0.975) since β is

additive on the log-odds scale. The remaining user inputs relate to the number of posterior

samples and the requested quantile intervals as with other methods.

Demonstration: Comparing salaries of female and male faculty within a college

I assess gender differences in 2017 salary data for 141 tenured faculty within a college

at a large public mid-western institution, see Figure 1. The salaries were publicly available
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data while gender was determined using pronouns in faculty bios. There were 82 women

(average salary = US$98K, SD = US$27K, median = US$93K) and 59 men (average salary

= US$115K, SD = US$43K, median = US$100K). As seen in Figure 1 and as supported

by the descriptive statistics, the data were right-skewed and the male salaries appeared to

have a higher location and variation than the female salaries.

We begin by analyzing these data with the t-regression model. The data were divided

by 10,000 such that the salaries are in units and tens. I present the series of steps to perform

the analysis in Figure 2 − the male salaries were entered for group 1 hence differences were

calculated as male − female salaries. I assumed that that average difference in salaries

would not exceed US$50,000 (5 in step 3), and that the ratio of group standard deviations

would not exceed 4. The model summaries are presented in Figure 3. The program also

creates four files available for download:

1. A plot for location differences presented in Figure 4.

2. A plot for scale ratios similar to the location differences plot.

3. A summary file containing summary statistics (including the potential scale reduction

factor) for the estimated parameters, and the posterior samples for the estimated

parameters that may be used for model criticism (Gelman, Meng, & Stern, 1996).

4. A rank plot visualizing the ranks of posterior samples for each parameter across chains

(Vehtari, Gelman, Simpson, Carpenter, & Bürkner, 2019), see Figure 5.

As seen in Figure 4, there was more than 95% chance that male faculty were paid

more than female faculty on average. However, the US$8,000 difference (Figure 3) pales in

comparison to the sample mean differences (115K−98K=17K) and is closer to the sample

median difference (100K−93K). This is because the t-regression identified outliers in the

data (as noted by a degrees of freedom value of 2.2, see Figure 3). And the outliers are

down-weighted during estimation. Also interesting is the difference in scale between both

groups. The scale of male salaries was 76%
(
(1.757 − 1) × 100%

)
larger than the scale
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of female salaries suggesting much greater variation in the salary data for men, as seen

in Figure 1. The effective sample size values are large enough for reliable inference and

the rank plots in Figure 5 suggested the sampler converged and the different chains mixed

adequately for the mean difference and scale ratios.

Given the importance of this topic, I opt for the quantile approach to further delve

into the data. We assess the gender differences in salaries when salaries are low (25th

percentile), at the median and when salaries are high (75th percentile). I simply modified

the user inputs to specify the 25th percentile as seen in Figure 6 and repeated this process for

the 50th and 75th percentiles. And at the 75th percentile, I specified a maximum believable

salary difference of US$100K given how high salaries could rise.

The application reports all the plots and files as before but we only present the

model summaries (Figure 7) and location difference probability plots (Figure 8) for the

75th percentiles results. The average salary difference (alongside 95% intervals) at the

25th, 50th and 75th percentiles were US$4,180 (95% interval: −2,810, 11,010), US$6,890

(−1,280, 15,140) and US$28,940 (12,380, 47,640) respectively. All this suggests that highly

paid women (75th percentile = US$105K) were paid a lot less than highly paid men (75th

percentile = US$134K). Also, worth noting is the scale ratio at high-end salaries (1.81

for men:women). In addition to being paid more, men’s salaries are less determined than

women’s salaries. I note that these results by themselves do not indicate bias (Billard,

2017).

Conclusion

I have outlined the statistical model behind the application for the four Bayesian

methods implemented in the application, and demonstrated the functionality in the case

of a continuous outcome. In the demonstration, a Bayesian approach enhanced our ability

to understand and communicate parameters of interest as seen in the summary plots that

permit direct probabilistic statements about parameters. Moreover, the requirements for

performing these analyses is a sound understanding of the subject matter and a good un-
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derstanding of the outcome measure. These are expectations that one should have of any

diligent researcher. Hence the application provides a way for diligent researchers to gain

rich information about patterns in data in simple applications. I look forward to enhancing

the application to perform more complex techniques in the coming months. By the time

of presentation, I expect the application to include two sample comparisons for count and

ordinal data.
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Men

Women

$70 $90 $110 $130 $150 $170 $190 $210 $230
Salary (in $US1,000)

2017 salary data from a college at a large public mid−western university

Basic salary data for 141 tenured faculty

Figure 1 . Basic salary for 141 tenured faculty within a college at a large public mid-western
institution by gender. The boxplot shows the median and interquartile range by group.
Each data point represents a salary.
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Figure 2 . Series of steps to perform the t-regression on the faculty salary data. Selecting
no in Step 2 (default) performs t-regression.
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Figure 3 . Model summary for t-regression results.
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Figure 4 . Using the posterior distribution to evaluate the average gender difference in
salaries. From the histogram, it is clear that most posterior samples were greater than zero.
From the line chart, one is able to evaluate the evidence supporting the salary difference
at any threshold. For example, there was 96.6% chance that male salaries were on average
higher than female salaries. However, the probability that the average salary difference
exceeded US$10,000 (1.0 on x-axis) was lower (31.8%).
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Figure 5 . Rank plots of the mean difference and scale ratios. The posterior samples are
rank transformed and plotted for each chain. If the different chains have the same target
and have fully mixed, each histogram should be uniformly distributed. This plot is an
improvement over trace plots. With trace plots, it is sometimes difficult to assess if chains
have mixed as the chains overlap visually and a single chain might obscure the trajectory
of other chains (Vehtari et al., 2019).
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Figure 6 . Modified step 2 in the earlier steps for t-regression and specified the desired
percentiles to perform the quantile regression approach.
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Figure 7 . Model summary for results at the 75th percentile.
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Figure 8 . Using the posterior distribution to evaluate the gender difference in salaries at the
75th percentile. From the histogram, all posterior samples were greater than zero, hence we
can be highly certain that 75th percentile of male salaries was higher than 75th percentile
female salaries. Moreover, the probability that this difference exceeded US$10,000 was
98.9%.
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