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Abstract6

A common practice in empirical data analysis is to dichotomize continuous
outcomes for substantive or interpretational purposes. A particular cut-point
on the outcome variable may be practically relevant, such that researchers
dichotomize the continuous outcome at the cut-point to create a binary out-
come, then proceed to model this binary outcome using logistic regression.
However, homoskedasticity of the error term in the linear regression model
for the continuous outcome is an often overlooked assumption for this ap-
plication of logistic regression to be valid. If this condition is not met, the
logistic regression model for the binary outcome will be misspecified, and the
coefficients and predicted probabilities will be incorrect. Correctly estimat-
ing the relationship can be difficult computationally. Hence, I recommend
that researchers directly model the continuous outcome even when there are
substantive justifications for modeling the dichotomized outcome.
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7

Introduction8

It is a relatively common practice for education researchers to dichotomize continuous9

variables into binary variables, then analyze the binary variables using logistic regression.10

The most common reason for doing this is substantive. For example, the original response11

variable may be student scores on a test with range of 0 to 100. On this test, students with12

scores equal to or above 70 pass, while others fail. In such situations, researchers interested13

in understanding the dynamics of student success on the test may dichotomize the original14
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test scores into 1 (pass) or 0 (fail) and model the probability that a student passed (or15

failed) using logistic regression.16

In this paper, I argue that there are reasons to distrust the findings from such a17

procedure. In the next section, I review two formulations for the logistic regression model.18

By doing this, it becomes evident why this procedure can be problematic. The source of19

this problem is heteroskedasticity in the linear regression model for the original continuous20

variable. I conclude with a simple demonstraton using simulated data.21

Formulation of the logistic regression model22

The standard logistic regression model is a generalized linear model (Fox, 2015; Mc-23

Cullagh & Nelder, 1989) for the probabilities responsible for an observed Bernoulli response24

variable:25

ln
[

p

1 − p

]
= α + Xβ (1)

where p are the probabilities of success underlying the observed Bernoulli variable for26

each case, α is the intercept, X is an n by k matrix for n cases and k predictors (excluding27

the intercept), and β are k regression weights for each predictor. The logit transformation28

applied to the probabilities (left hand side of equation (1)) equates the probabilities to the29

predictors, X, multiplied by their weights, β, plus the intercept, α.30

We can rewrite equation (1) by solving for p:31

p = e(α+Xβ)

1 + e(α+Xβ) (2)

Equation (2) is also known as the inverse logit transformation applied to α + Xβ,32

transforming it from a value that has a possible range of −∞ to ∞ to a probability guar-33

anteed to lie between 0 and 1. At this point, I motivate the logistic regression model using34

a latent variable formulation (Amemiya, 1981):35

p = P (α + Xβ + ϵ > t) (3)

This formulation of the model is the one we rely on when we dichotomize a continuous36

variable for use as the outcome in a logistic regression model. The probabilities underlying37

the new binary outcome are the probabilities that a continuous variable with a systematic38

componenent, α + Xβ, and random error, ϵ, exceeds a threshold, t. For logistic regression,39

we make the additional assumption that ϵ is a standard logistic variable (ϵ ∼ L(0, 1)); this40

means that ϵ has mean 0 and variance of π2/3.41

As one will observe from equation (3), changing the value of t simply changes the42

value of α. If the threshold increases by 3, then the intercept increases by 3. So for the43
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model to be identified, we will assume the threshold is 0, t = 0. Given this information, we44

continue to solve for p in equation (3):45

p = P (α + Xβ + ϵ > 0) = P (ϵ > −α − Xβ)
= P (ϵ < α + Xβ) since L(0, 1) is symmetric about 0

(4)

The final line of equation (4) is simply the cumulative distribution function of L(0, 1)46

evaluated at α + Xβ, hence:47

p = e(α+Xβ)

1 + e(α+Xβ) (5)

This result in equation (5) shows that the latent variable formulation for the logis-48

tic regression model is equivalent to the generalized linear model formulation for logistic49

regression in equation (2). It also reveals one major assumption for the standard logistic50

regression model to be valid: the random error must be homoskedastic i.e. ϵ ∼ L(0, 1). If51

this assumption is violated, then equation (5) is wrong. Assuming ϵ ∼ L(0, σ) instead where52

σ has a different value for each case, the correct equation is:53

p = e
(

α+Xβ
σ

)
1 + e

(
α+Xβ

σ

) (6)

Hence if the random error is heteroskedastic, the standard logistic regression model54

as implemented in statistical software packages will be inadequate if the model is applied55

to the dichotomized outcome.56

How problematic can this form of heteroskedasticity be?57

To illustrate the problem, I present a simple example. Assume the following regression58

equation for a continuous variable, zi: zi = 0.75 × xi + ϵi, where i = 1, 2, . . . , 5000, xi ∼59

Bern(0.5) and ϵi ∼ L(0, γ0 + γ1xi), so the error variance depends on xi. We can consider xi60

random assignment to treatment (xi = 1) and control (xi = 0) groups, and zi to be exam61

performance. I dichotomize zi at 0 to create a new binary response, yi, such that yi = 1 when62

zi > 0 and yi = 0 when zi ≤ 0. So zi is exam performance underlying the binary outcome,63

yi which we will consider to an indicator of passing the exam. I set {γ0, γ1} = {1, 0} to64

create a dataset with homoskedastic errors; then set {γ0, γ1} = {
√

1.5, (
√

3−1)√
2 } to create65

another dataset with heteroskedastic errors.66

As is visible from Figure 1, the average relationship between xi and each zi is not that67

different under homoskedasticity and heteroskedasticity, but the heteroskedastic zi visibly68

displays lesser error variance for the treatment group. The treatment not only improved69

performance on average, it shrunk the variability of the treatment group.70
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Homoskedasticity

Heteroskedasticity
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Figure 1 . Relationship between group assignment and continuous outcome under het-
eroskedasticity (top panel) and homoskedasticity (bottom panel). The vertical dashed lines
are group means. Under heteroskedasticity, the variance of z is smaller for the treatment
group.

Next, I regressed the continuous variable, zi, on xi using linear regression. Regardless71

of the error variance structure, the linear regression model had a decent recovery of the72

coefficient for xi; both coefficients were within 5% of 0.75 (see first two columns of Table73

1). This is consistent with the literature on linear regression models fit with OLS: unbiased74

coefficient estimation does not dependent on assumptions like homoskedasticity or normality75

of errors (Gelman & Hill, 2007, p. 46).76

I next regressed the binary variable, yi, on xi using logistic regression. Under ho-77

moskedastic error variance, the coefficient of xi was 0.719, within 5% of 0.75. How-78

ever, under heteroskedastic error variance, the coefficient of xi was about 35% higher79 (
(1.011 − 0.75)/0.75 × 100%

)
than what I specified in the data generation process. In80

this situation, we have inflation of the coefficient. Depending on the form of heteroskedas-81

ticity, the result might be coefficient deflation. Consequently, this misspecification returns82

incorrect probabilities of success for both groups. Under homoskedasticity, the treatment83

and control groups had 67.2% (1+e0.013+0.719)−1 and 50.3% (1+e0.013)−1 chance of passing84

the exam on average. Under heteroskedasticity, the treatment and control groups had 73.3%85

(1 + e−0.044+1.011)−1 and 48.9% (1 + e−0.044)−1 chance of passing the exam on average.86

This happens because the standard logistic regression model is misspecified under87

heteroskedasticity. And one cannot recover the true logistic regression coefficients using88

standard maximum likelihood estimation of the logistic regression model.89
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Table 1
Regression of outcome variables on x

Dependent variable:
Homoskedastic z Heteroskedastic z Homoskedastic y Heteroskedastic y

x 0.739∗∗∗ 0.752∗∗∗ 0.719∗∗∗ 1.011∗∗∗

(0.050) (0.052) (0.058) (0.060)

Constant 0.025 −0.062 0.013 −0.044
(0.036) (0.037) (0.040) (0.040)

Observations 5,000 5,000 5,000 5,000

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
The models for z are linear regression models. The models for y are logistic
regression models.

Discussion90

If the functional form of heteroskedasticity is known, then it is possible to modify the91

likelihood function used in maximum likelihood estimation of the logistic regression model.92

The literature is more developed in the case of probit models, where there exists a class of93

models known as heteroskedastic probit models (Alvarez & Brehm, 1995). However, even if94

the researcher can identify the functional form for heteroskedasticity, there is no guarantee95

that estimating the model will result in a correct solution because a ratio of parameters96

exists in the log-likelihood function (Keele & Park, 2006). And potential problems include97

multiple solutions with near equivalent fit to the data, near singular Hessian matrices, large98

standard errors and convergence failures.99

Hence, I recommend that when researchers have access to the original continuous100

variable, they should model this variable regardless of questions of substantive interest. If101

education researchers are interested in studying relationships at thresholds that are very102

different from the mean of the outcome, quantile regression (Koenker & Hallock, 2001) is103

one approach for exploring the relationship between the predictors and continuous outcome104

at different quantiles of the outcome. There are methods for converting linear regression105

coefficients to logits and odds ratios (Moser & Coombs, 2004) but they also rely on the106

aforementioned homoskedasticity assumption.107

Finally, the problem of heteroscedasticity described above can exist even when the108

outcome variable is truly binary, or the binary outcome is difficult to rationalize as the109

manifestation of a dichotomized continuous variable. I focus on the case where the investi-110

gator has access to the continuous variable here because the situation is readily salvageable:111

analyze the continuous outcome directly. In situations where the investigator does not have112

access to the underlying continuous variable, but heteroskedasticity may be a concern, more113

flexible regression approaches such as generalized additive models (Hastie, 2017) and kernel114

regularized least squares (with logistic loss, Hainmueller & Hazlett, 2014) may yield results115

that are more likely to reflect the true relations in the data. An additional alternative is116
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to adopt a Bayesian framework using weakly informative priors to improve identification of117

the parameters in the log-likelihood function for heteroskedastic models.118
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