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Abstract

The standard regression technique for modeling binary response variables in
education research is logistic regression. The odds ratios from these models
are used to quantify and communicate variable effects. These effects are
sometimes pooled together as in a meta-analysis. We argue that this process
is problematic as odds ratios calculated from different models and studies
are not directly comparable. As an alternative, we recommend the linear
probability model for computing risk differences and a Poisson working model
for computing risk ratios. These effect sizes are comparable across models
and studies. However, standard approaches for estimating these models
have their problems, hence, we motivate and present modified estimation
techniques for estimating these models that mitigate these problems.

Keywords: effect size, odds ratio, risk difference, risk ratio, linear probability
model, Poisson working model

When applied researchers intend to model binary response variables, they often use
the logistic regression model. Although there are a variety of approaches for modeling binary
response variables, logistic regression is flexible in that it allows for binary, categorical and
continuous predictor types. Researchers have applied logistic regression to study a wide
variety of questions; examples include degree completion (e.g. Carpenter II, Kaka, Tygret,
& Cathcart, 2018; Cox, Reason, Nix, & Gillman, 2016) and college attendance (e.g. Klevan,
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Weinberg, & Middleton, 2016; Eccles, Vida, & Barber, 2004). The coefficients one obtains
from the logistic regression model are logits or log odds, and there are challenges interpreting
them substantively. To ease interpretation of the coefficients, it is standard practice to
exponentiate them to obtain odds ratios. Our argument is that odds ratios are flawed for
quantifying and documenting the magnitude of the effect of predictor variables across studies.
And documenting the effect of predictor variables is important for a cumulative science.
Hence, our study has impacts for meta-analysis of odds ratios.

In the remainder of this paper, we will:

• Make the case that the process of interpreting logits and odds ratios as variable effects
is flawed for establishing a record of variable effects.

• Recommend regression models that estimate alternative effect sizes that do not suffer
the same flaws.

• Identify problems with these models, recommend methods to mitigate these problems,
and evaluate these methods.

• And finally, demonstrate these alternative models using a real data example.

The problem with odds ratios obtained from the logistic regression model

Before we make the case that the odds ratio obtained from the logistic regression model
is problematic for quantifying predictor variable effects, we emphasize one feature of ordinary
least squares (OLS) estimation of the linear regression model. It is an established result that
when a predictor variable in a regression model is uncorrelated with other determinants of
an outcome, its coefficient is an unbiased estimate of the predictor’s effect on the outcome
(Wooldridge, 2010, p. 49). The easiest way to find such a predictor variable is a variable
indicating random assignment of individuals to treatment and control groups. It is for this
reason that OLS or its specialized forms such as the Student’s t-test can be used to obtain
causal effects of a treatment when individuals are randomly assigned to treatment and
control groups. Our argument is not about causal analysis but this property of OLS explains
why the regression coefficient of such a variable continues to be the simple mean difference in
the presence of additional predictors, control variables or covariates, with slight fluctuations.1

This feature is highly desirable because it allows us to estimate the unconfounded effect
of manipulated variables on outcomes of interest with simple study designs like two-group
randomized experiments.

Most applied statistical analyses do not involve such random variables as previously
1There are some exemptions to this rule; including an interaction created from the variable or a mediator

in the model will cause the coefficient of the variable to change.
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described. This is why in practice, researchers attempt to control for the effects of other
predictors to arrive at better estimates of the unconfounded relation between predictor
variables of interest and the outcome. Since most predictors are correlated to some degree,
it is common for regression coefficients to change from one model to the next. In fact, it
is common for researchers to focus on the change in the regression coefficients of predictor
variables of interest from model to model, interpreting changes as a function of which predictor
variables are included in the regression model. A simple example is the examination of the
effect of elite college attendance on education and career achievement. Brand and Halaby
(2006) found that “introducing controls for pre-college academic and family background
dramatically reduces the magnitude of the coefficients (the elite college effect), although
some are still statistically significant.” This change in the magnitude of coefficients only
happened because elite college attendance was related with some of these pre-college academic
and family background variables, and these background variables were predictive of the
education and career outcomes under study. Were elite college attendance independent of
these background characteristics, the estimated elite college effect in OLS regression would
remain the same with or without controlling for the background variables.

We now return to the logistic regression model and its behavior in the case of a
predictor that is unrelated to other determinants of the outcome. The major flaw we intend
to point out is that this desirable property of OLS does not apply to the logistic regression
model. In fact, as an investigator includes more variables in a model that are predictive
of an outcome, the absolute magnitude of the coefficient of a variable unrelated to other
determinants of the outcome will keep increasing. The problem goes under different names
in different literatures: neglected heterogeneity (econometrics; Wooldridge, 2010, p. 470),
unobserved heterogeneity (sociology; Mood, 2010); non-collapsibility (biostatistics; Greenland,
Robins, & Pearl, 1999) and omitted covariates (biostatistics; Gail, Wieand, & Piantadosi,
1984).

The exposition of the problem by Mood (2010) is easy to follow and we adopt it here.
First, we begin with the latent variable formulation (Amemiya, 1981; Long, 1997, p. 40) for
the logistic regression model. Consider the following data generation process for a binary
response variable, y: y = 1(y∗ > c), where 1() is the indicator function, y∗ is a continuous
variable, and c is a cut-off. All values of y∗ above the c are a 1 on y, and the others are 0 on
y. A simple example would be y∗ as test scores, and all participants with scores above a
cutoff, c, pass (a 1 on y), and other participants fail (a 0 on y). We make some simplifying
assumptions: y∗ has a range of negative infinity to infinity, and c is 0. Additionally, the true
equation for y∗ or the model on the logit scale is:
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y∗ = b0 + b1 × x1 + b2 × x2 + u (1)

where b0 is the intercept, x1 and x2 are predictor variables, and b1 and b2 are their
respective coefficients. u is the error term assumed to be logistic with mean 0 and a variance
that is s2 × π2/3, where s is any positive number2 − if s is small, the error variance is very
small, and vice-versa. We assume x1, x2 and u are uncorrelated. Finally, y∗ is latent, only y
is available. Then logistic regression is the correct model for y, and logistic regression is an
attempt to recover the model on the logit scale in equation (1).

During estimation of logistic regression, the error term is always assumed to have
a mean of 0, but a variance of π2/3. Hence, we re-write u as a function of υ, u = s × υ,
where υ is logistic with mean 0 and variance π2/3. Thus the logistic regression model that
is estimated is:

y∗

s
= b0

s
+ b1

s
x1 + b2

s
x2 + s

s
υ (2)

For now, we assume u = υ implying s = 1. In that situation, s vanishes from equation
(2). However, should we exclude x2 from the model, x2 gets absorbed into the error such
that the error becomes b2x2 + υ. s then becomes:

s =
√

Var(b2x2) + Var(υ)
π2/3 =

√
b2

2 ×Var(x2) + π2/3
π2/3 (3)

Hence, when x2 is excluded from the equation, the coefficient of x1 then equals:

b1
s

= b1 ×
√

π2/3
b2

2 ×Var(x2) + π2/3
≈ b1 ×

√
3.29

b2
2 ×Var(x2) + 3.29

(4)

In equation (4), the value by which we multiply b1 will be less than one as long
as b2 6= 0, hence, the coefficient of x1 will be shrunken towards zero. Recall that x1 is
unrelated to x2 or u, yet the exclusion of x2 from the model deflates the coefficient of x1.
So this phenomenon cannot be explained by confounding or suppression effects (MacKinnon,
Krull, & Lockwood, 2000). The implication of this for data analysis is that unless one
includes all the determinants of the outcome in a logistic regression model, the coefficient of
a predictor variable that is unrelated to other determinants (such as x1) of the outcomes
will be shrunken towards zero. The magnitude of shrinkage will depend on the variance of

2It is standard to express the variance of the logistic distribution as a factor of π2/3.
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the omitted variables, and how strongly the omitted variables relate with the outcome. By
including more determinants of the outcome in additional models, the absolute magnitude
of the coefficient of a variable, such as x1, will increase.

One additional implication of this result is that the change in odds ratios in logistic
regression as additional predictors are included in the model cannot simply be interpreted
as a consequence of “controlling for other predictors”. The source of this problem is that the
latent variable that is modeled in logistic regression, y∗/s, changes from one model to the
next model, since s varies as a function of the predictors in the model. If the latent variable
changes from one model to the next, then in principle, quantities that rely directly on the
latent variable such as logits and odds ratios are not comparable across models. Moving
beyond comparison across models is comparison across studies, such as in meta-analysis. The
regression estimates for a meta-analysis will come from models with such varying degrees in
omitted variables, that the coefficients will not be comparable. This is regardless of whether
the constituent studies are randomized trials.

How will the coefficient of a variable whose relationship with the outcome is confounded
by other variables respond to the inclusion of these confounders in the model? The coefficient
will change for two reasons: (1) its relatedness to other predictors (see equation 6 in Mood,
2010), and (2) the fact that the outcome is better explained (reduction in s). Hence,
the source of the change in odds ratios in logistic regression as additional predictors are
included in the model cannot simply be interpreted as a consequence of “controlling for
other predictors”.

Alternative effect sizes that do not suffer the same flaws as the odds ratio

One method by which researchers can address this problem is to compute and report
alternative effect size measures for binary response variables. We introduce the risk ratio
and the risk difference as alternatives using the simple example of a two-by-two contingency
table. Additionally, we connect these effect sizes to alternative regression models that permit
covariate adjustment for effects of interest. The data are hypothetical data obtained from
Peng, Lee, and Ingersoll (2002). The sample comprises 189 inner city school children of
which 59 were recommended for remedial reading and 130 were not. In Table 1, we break
down assignment to remedial reading by gender.

Given the data in Table 1, the odds of recommending boys to remedial reading was
0.63 (36/57). The odds of recommending girls was 0.32 (23/73). Hence, the odds ratio
for boys to girls was 2.00 (0.63/0.32). If one performs a logistic regression regressing the
indicator for recommendation to the remedial program on an indicator for boy, the odds
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Table 1
Two-by-two contingency table for 189 children

Boys Girls

Yes 36 23
No 57 73

Reproduced from Table 2 in Peng, Lee, and Ingersoll (2002)

ratio matches the exponentiated coefficient for boy, exp(0.6954) = 2.00. And it is standard
to apply logistic regression even when there are multiple predictors of the binary outcome.

The probability of recommending boys to remedial reading was 0.39
(
36/(36 + 57)

)
.

The probability of recommending girls was 0.24
(
23/(23 + 73)

)
. Hence, the probability ratio

for boys to girls was 1.62 (0.39/0.24). We can interpret the finding as: boys were on average
62%

(
(1.62− 1)× 100%

)
more likely to be recommended to remedial reading than girls. This

effect is known as the risk ratio (Valentine, Aloe, & Lau, 2015) or relative risk (Agresti, 2013,
p. 43; Jewell, 2004, p. 31). We will call it the risk ratio (RR) going forward. Zou (2004)
studied the use of Poisson regression to estimate the log risk ratio under limited simulation
conditions and found that Poisson regression produced estimates of the log risk ratio with
low bias. In our example, if one performs Poisson regression regressing the indicator for
recommendation to the remedial program on an indicator for boy, the risk ratio matches the
exponentiated coefficient for boy, exp(0.4798) = 1.62.

Differently from calculating the ratio ratio, we can calculate the difference in the
probability of recommendation between boys and girls; the difference was 0.15 (0.39− 0.24).
We can interpret the finding as: boys were on average 15% points (0.15× 100%) more likely
to be recommended to remedial reading than girls. This effect is known as the (absolute)
risk difference (Valentine et al., 2015), the excess risk (Jewell, 2004, p. 37) or the difference
of proportions (Agresti, 2013, p. 43). We will call it the risk difference (RD). Cheung (2007)
studied the use of linear regression to estimate the risk difference under limited simulation
conditions and found that linear regression produced estimates of the risk difference with
low bias. In our example, if one performs linear regression regressing the indicator for
recommendation to the remedial program on an indicator for boy, the risk difference matches
the coefficient for boy (0.15).

We have linked both alternative effect sizes to the regression-based approaches because
the simple formulas we presented for obtaining the effect sizes do not apply when one
has multiple predictors of the binary response variable. And regression provides a natural
approach for modeling an outcome with multiple predictors. It is also the case that the
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neglected heterogeneity problem with logistic regression coefficients and odds ratios does
not affect linear regression and Poisson regression (Gail et al., 1984).3

For applied researchers, one benefit of computing these alternative effect sizes is their
ease of interpretation. The risk ratio and risk differences are a multiplicative and additive
comparison of probabilities respectively; and their interpretations are intuitive. This is in
contrast to odds ratio which applied researchers sometimes struggle to interpret (Altman,
Deeks, & Sackett, 1998; Greenland, 1987; Osborne, 2006; Schwartz, Woloshin, & Welch,
1999).

Both these modeling alternatives (linear and Poisson models on binary outcomes) are
unconventional in the education literature, hence, we devote the next sections to discussing
these models, informing the reader of drawbacks, and justifying their use given certain
adjustments to the models.

OLS on binary response variables to obtain the risk difference. This model
is known as the linear probability model (LPM). It goes by this name because the model
assumes the relationship between the predictors and the outcome is linear on the probability
scale for the outcome. This assumption reveals obvious problems. If a model is linear on
the probability scale, then the predicted values (which are supposed to be probabilities)
are unbounded such that one can predict probabilities less than zero or greater than one
− probabilities outside the unit interval. This undesirable feature of the LPM is a simple
rationale for logistic regression where the application of the (inverse-)logit function ensures
all the probabilities are bounded between zero and one. Additionally, two assumptions for
conducting inference with OLS using classical techniques are that the errors are normally
distributed and have constant variance. It is inconceivable that such assumptions are met
for binary response variables.

For certain practitioners, these concerns invalidate the LPM as an alternative when
the outcome is binary. Our rebuttal begins with the truism that “all models are wrong”
(Box, 1976). The logistic regression model for binary response variables is not correct, but
is justified by its desirable properties. However, we have shown that it also possesses the
undesirable feature that the regression coefficients are not comparable from model to model
or from study to study. OLS fit to the data does not suffer this problem (Gail et al., 1984).

The natural question that follows is: how reliable are OLS coefficients for binary
3For the reader familiar with generalized linear models (Fox, 2015; McCullagh & Nelder, 1989), it is

precisely the log and identity link functions that do not suffer the problem of neglected heterogeneity; while
the logit link function does. Experienced modelers may wonder about using the binomial distribution together
with a log link or identity link function to obtain the risk ratio and risk difference respectively. However,
using such unorthodox link functions with the binomial distribution may result in convergence problems in
commonplace statistical packages (Cheung, 2007; Wacholder, 1986).
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Figure 1 . Relationship between fitted values from regression and probabilities implied by
linear probability model

response variables? In the latent variable model we used to develop logistic regression, if
we assume the error term has a uniform distribution (see Appendix A for derivation; also
Olsen, 1980; Amemiya, 1981), we arrive at a linear probability model of the form:

P (y = 1|X) =


1, if Xβ > 1

Xβ, if Xβ ∈ (0, 1]

0, if Xβ ≤ 0

(5)

where y is the binary response, X is the table of predictors for n cases and k predictors
including the constant, β are the k regression coefficients, and P (y = 1|X) is the probability
of success (1 on y) given the predictors. Figure 1 corresponds to equation (5); when the
fitted values from the regression lie between 0 and 1 inclusive, they are the probabilities of
success. When these fitted values are less than 0, we believe them to be zero; when these
fitted values exceed 1, we believe them to be one.

OLS cannot estimate the non-linear relationship presented in equation (5) and depicted
in Figure 1. And the zero conditional mean assumption for unbiasedness of OLS coefficients
(Wooldridge, 2010, p. 50) is only met when all the fitted values are between 0 and 1 (Horrace
& Oaxaca, 2006).

In practice, the investigator never has access to Xβ, since β is a population parameter.
Horrace and Oaxaca (2003) suggested that one may use Xβ̂, the predicted values from
any regression application, in place of Xβ. Having predicted values outside the 0 − 1 or
unit interval can easily result in biased coefficients; in our current application, these will be
biased risk differences. However, if the predicted probabilities fall on the unit interval, then
the OLS estimates may be trustworthy (Horrace & Oaxaca, 2003).

A scenario in which OLS applied to a binary variable is guaranteed to predict probabil-
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ities that lie on the unit interval is when the only predictor in the model is a single categorical
variable. Consider the standard two-group mean difference question that we usually analyze
using t-tests, or one-way ANOVA when there are multiple groups, but instead, the outcome
is binary. OLS applied to a binary outcome with a single categorical predictor (i.e., t-tests
or ANOVA) is simply a model for the average probability of success for the different groups
or the cell means. This is also the case for multiple categorical predictors as long as all
possible interactions are in the model, such as in factorial designs. In such situations, probit,
logistic, linear and Poisson regression will yield identical fit to the mean of the data i.e., the
probabilities predicted by these approaches will be equivalent (Wacholder, 1986). However,
there will be differences in statistical inference as the methods imply different assumptions
about the error variance.

The inclusion of continuous predictors, such as in analysis of covariance or typical
multiple regression contexts, may result in predicted probabilities that extend beyond the
unit interval producing biased OLS estimates. If there are large enough values of the
continuous predictor, the predicted values can easily fall outside the unit interval. To remedy
the problem of predicted probabilities falling outside the unit interval, Horrace and Oaxaca
(2003) recommended the following sequence of steps:

1. Estimate the regression model and compute the predicted values.
2. If all the predicted values fall between 0 and 1, stop, this is the final model.
3. Delete all the cases with predictions less than 0 or greater than 1, return to step 1.

This approach is based on the fact that if the predicted values in a given application
are a stand-in for the true fitted values, then all that is needed to estimate the coefficients
are the data points with predictions between zero and one. Implementing this approach
only requires that a practitioner be able to run analysis on a subset of their data. The
practitioner will run the regression on increasingly smaller subsets of their data until all
the predicted probabilities fall between 0 and 1. Horrace and Oaxaca (2003) named this
approach sequential least squares (SLS) and showed using a limited simulation study that
this approach reduces the bias of OLS estimation applied to binary response variables.

An additional concern about OLS is the misspecified model for the errors; the resid-
uals obtained are neither normal nor homoskedastic. This misspecification has conse-
quences for statistical inference on model coefficients. To remedy this, one may compute
heteroskedasticity-consistent (HC) standard errors (Cribari-Neto, Souza, & Vasconcellos,
2007), which can account for non-constant error variance when the outcome is binary (Che-
ung, 2007). Finally, we recommend that investigators conduct outlier detection should they
choose to apply OLS estimation to binary data. The same concerns that arise in standard
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linear regression apply here, and diagnostic methods such as dfbetas can be helpful for
identifying influential cases.

Poisson regression on binary response variables to obtain the risk ratio.
Poisson regression with the log link results in a multiplicative comparison of probabilities,
hence exponentiated coefficients are risk ratios. We can also exponentiate the regression
prediction to obtain the predicted probability for each case. However, the range of the
exponential function is 0 to ∞. The implication of this is that such a model can result
in predicted probabilities that exceed one − this is clearly problematic. Additionally, an
assumption for conducting inference with Poisson regression is that the probability of
success at a given level of the predictor variables equals the variance of the outcome at
the same level of the predictor variables − the conditional mean equals the conditional
variance assumption. This assumption is problematic for binary response variables, where
the variance is a quadratic function of the mean.4

Lumley, Kronmal, and Ma (2006) described Poisson regression applied to binary
outcomes as a Poisson working model, and we borrow this term for the remainder of this
paper. So as with OLS applied to binary outcomes, the natural question that follows is:
how reliable are the regression coefficients from the Poisson working model? In the latent
variable model we used to develop logistic regression, if we assume the error term has an
exponential distribution (see Appendix A for derivation), we arrive at a Poisson working
model of the form:

P (y = 1|X) =

1, if Xβ > 0

eXβ, if Xβ ∈ (−∞, 0]
(6)

using the same notation as previously. Here, Xβ are the fitted values on the log scale.
Figure 2 corresponds to equation (6); when the fitted values from the Poisson working model
are less than 0, if we exponentiate them, we obtain the probabilities of success. When these
fitted values exceed 0, we believe the probability of success to be one.

Poisson regression estimated using maximum likelihood does not estimate the non-
linearity on the log scale in equation (6) and depicted on the left panel of Figure 2. And the
coefficients from the Poisson working model will only be unbiased when all fitted values on
the log scale are less than zero (see Appendix A).

4The conditional variance of a Bernoulli outcome is µ(1 − µ) where µ is the conditional mean. Poisson
regression assumes the conditional variance is the same as the conditional mean i.e., µ (Krishnamoorthy,
2006, p. 134). However, as µ tends to 0, µ better approximates µ(1 − µ). This means that the Poisson
distribution provides a reasonable approximation to the Bernoulli distribution when the probability of success
on the outcome across all levels of the predictor variables is low.
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As with all statistical models, the investigator never has access to Xβ; all an in-
vestigator has is Xβ̂. We borrow from the work on Horrace and Oaxaca (2003) on the
linear probability model and suggest that one may use Xβ̂, the predicted values from any
regression application in place of Xβ. Having predicted values on the log scale greater
than 0 or predicted probabilities exceeding 1 can easily result in biased coefficients; in our
current application, the exponentiated coefficients will be biased risk ratios. However, if the
predicted probabilities fall on the unit interval, then the Poisson working model estimates
may be trustworthy. Similar to OLS, all predicted probabilities are guaranteed to be under
one when the predictors are either a single categorical predictor or all-way interactions
between multiple categorical predictors (Wacholder, 1986).

When there are predicted probabilities greater than one, we hypothesize that one
can extend the sequential least squares approach of Horrace and Oaxaca (2003) to the
Poisson working model, following the same series of steps. As with SLS, the programming
barrier to this approach is relatively low. An additional problem with the Poisson working
model is the problem of variance misspecification. Zou (2004) showed using simulation that
applying heteroskedasticity-consistent standard errors lessens the impact of this problem.
Hence after taking a sequential approach to coefficient estimation, we hypothesize that
applying heteroskedasticity-consistent standard errors should mitigate problems with variance
misspecification.

A brief review of approaches derived from the logistic regression model.
We note that there are approaches for deriving effect size measures from the logistic regression
model that satisfy the criteria of comparability across both models and studies. Mood
(2010) focused on additive comparisons of probabilities and lists two approaches in addition
to linear regression that satisfy both criteria: average marginal effect (AME) and average
partial effect (APE).
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Mood (2010) identifies the AME as the expected change in the probability of the
outcome for a unit change in the predictor of interest. This value is calculated using
information from all cases and variables in the data. Hence, the AME is a single numeric
summary of the effect of a predictor. According to Mood (2010), that the AME is a single
numeric effect of a predictor differentiates the AME from the APE. For the APE, only cases
with values that match or fall within a specified range on the predictor of interest are used
in the calculation. This distinction permits the APE to vary as a function of the specified
values on the predictor of interest, thus capturing nuanced relations in the data.5

In this paper, we focus only on single numeric summaries that communicate the effects
of a predictor. We find that graphs are better at communicating nuanced summaries of
relations in data, as we demonstrate in the Data Demonstration section. Hence, we eliminate
the APE from consideration. On the other hand, the AME returns a value that is highly
similar to OLS coefficients, prompting Mood (2010) to state, “deriving AME from logistic
regression is just a complicated detour”. Moreover, computing the AME may be tedious,
hence the availability of special-purpose routines, e.g. Baum (2010) in Stata, and Leeper
(2018) in R. Hence, we explore this procedure no further given its similarity to OLS results
and the need for special-purpose routines to no notable advantage.

Methods: Simulation studies

In two simulation studies, we evaluated the LPM (study 1) and Poisson working model
(study 2) when both models are true for the data. This allowed us to test parameter recovery
of the risk difference and risk ratio.

In both simulations, we used the following evaluation criteria:

1. bias: estimated coefficient − population parameter; desirable result is for average bias
across replications to be as close to zero as possible.

2. relative bias: bias divided by population parameter. We are only able to calculate
relative bias when the population parameter is non-zero. We adopted the proposal in
Flora and Curran (2004) where absolute relative bias under 5% is considered trivial,
between 5% and 10% is moderate, and greater than 10% is substantial.

3. empirical coverage rate (ECR) of 95% confidence interval (CI): proportion of times
across replications that the 95% CI included the population parameter. We adopted the
liberal proposal in Bradley (1978) where ECR between 92.5% and 97.5% is considered

5There is variation in the use of these terms, as seen in examples from leading econometrics texts. For
example, Cameron and Trivedi (2009, sec. 10.6) and Wooldridge (2013, p. 592) use both terms interchangeably
to describe what Mood (2010) calls the AME.
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adequate.

For both simulations, we have the following expectations:

• When the true fitted values result in plausible probabilities (all Xβ ∈ [0, 1] for the LPM,
all Xβ ∈ (−∞, 0] for the Poisson working model), the standard linear and Poisson
regression models will have acceptable (relative) bias in parameter recovery for the risk
difference and (log) risk ratio respectively. Additionally, applying heteroskedasticity-
consistent standard errors will ensure that the empirical coverage rates of the confidence
intervals are adequate.

• When the true fitted values result in implausible probabilities (some Xβ < 0∨Xβ > 1
for the LPM, some Xβ ∈ (0,∞) for the Poisson working model), the standard linear
and Poisson regression models will have high (relative) bias in parameter recovery for
the risk difference and (log) risk ratio respectively. However, applying the sequential
approach of Horrace and Oaxaca (2003) will reduce the bias to acceptable levels.
Additionally, applying heteroskedasticity-consistent standard errors to the estimates
based on the sequential approach will ensure that the empirical coverage rates of the
confidence intervals are adequate.

The specific variant of heteroskedasticity-consistent standard errors we applied was
HC4. In addition to accounting for heteroskedasticity, it also accounts for leverage (Cribari-
Neto et al., 2007).

Study 1: Evaluating OLS and SLS when the linear probability model is true

We simulated data according to the linear probability model to test the performance
of OLS and SLS. We controlled the proportion of cases with predicted probabilities that
exceeded the unit interval. We generated 4,999 datasets (each n = 500) according to the
following equation:

y =

1, if 0.5 + βb × xb + βc × xc + υ > 0.5

0, otherwise
(7)

where xb was binary with equal proportion of cases at 0 and 1, xc was continuous
uniform with minimum of −1 and maximum of 1, Cor(xb, xc) = .3 suggesting a moderate
correlation between both predictors, and υ was continuous uniform with minimum of −0.5
and maximum of 0.5. When we generate data according to this process, we would expect
that on average, the OLS coefficients for xb and xc would be βb and βc respectively.
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Table 2
Design conditions to test least squares estimation methods for linear probability model
Conditions Binary coef. Continuous coef. Min P Max P Expected behaviour

1 0.00 0.00 0.50 0.50 Acceptable
2 0.10 0.00 0.50 0.60 Acceptable
3 0.00 0.25 0.25 0.75 Acceptable
4 0.10 0.25 0.25 0.85 Acceptable
5 0.00 0.50 0.00 1.00 Borderline
6 0.10 0.50 0.00 1.10 Problematic
7 0.00 0.75 -0.25 1.25 Problematic
8 0.10 0.75 -0.25 1.35 Problematic

Note. Min P and Max P are the minimum and maximum prediction respectively given
the intercept of 0.5 and coefficients of the binary and continuous predictors. We expect
OLS to perform adequately when all the predictions fall between 0 and 1, hence the
expectations in the final column.

In equation (7), the regression prediction for each case is 0.5 + βb × xb + βc × xc. If
there are cases in the data for which this value is less than 0 or greater than 1, we should
expect OLS estimates to be biased. This is what we set out to test. Making the continuous
variable uniform ensures we can generate a regression prediction that will remain within
a pre-specified range. To control the proportion of cases with predictions outside the unit
interval, we varied the regression coefficients (see Table 2). Table 2 also includes the values
for the minimum and maximum predictions. These values are found through the following
formula:

For condition j

Min P = 0.5 + βb ×min(xb) + βc ×min(xc)

Max P = 0.5 + βb ×max(xb) + βc ×max(xc)
, j = {1, 2, . . . , 8} (8)

Using condition 8 in the Table as an example, the minimum probability was 0.5+(0.1×
0) + (0.75×−1) = −0.25, and the maximum probability was 0.5 + (0.1× 1) + (0.75× 1) =
1.35. Consequently, we would expect OLS to return biased coefficients in condition 8,
hence the expected problematic behaviour. Finally, for both OLS and SLS, we applied
heteroskedasticity-consistent standard errors to account for the heteroskedasticity implied
by the linear probability model.
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Table 3
Design conditions to test Poisson regression applied to binary response variables
Conditions Binary coef. Continuous coef. Min P Max P Expected behaviour

1 0.00 0.00 0.37 0.37 Acceptable
2 0.50 0.00 0.37 0.61 Acceptable
3 0.00 0.50 0.22 0.61 Acceptable
4 0.50 0.50 0.22 1.00 Borderline
5 0.00 1.00 0.14 1.00 Borderline
6 0.50 1.00 0.14 1.65 Problematic

Note. Min P and Max P are the minimum and maximum probabilities respectively
given the intercept of -1 and coefficients of the binary and continuous predictors. We
exponentiated the regression prediction to obtain the minimum and maximum predicted
probabilities. We expect Poisson regression to perform adequately when all the predicted
probabilities are less than 1, hence the expectations in the final column.

Study 2: Evaluating the performance of the Poisson working model when the
Poisson working model is true

We simulated data according to the Poisson working model to test the performance
of Poisson regression and a sequential Poisson regression approach. We generated 4,999
datasets (each n = 500) according to the following equation:

y =

1, if − 1 + βb × xb + βc × xc + υ > −1

0, otherwise
(9)

where xb was binary with equal proportion of cases at 0 and 1, xc was continuous
uniform with minimum of −1 and maximum of 1, Cor(xb, xc) = .3 suggesting a moderate
correlation between both predictors, and υ was exponential with scale parameter of 1 − 1,
υ ∼ exp(1)− 1. When we generate data according to this process, we would expect that on
average, the Poisson regression coefficients for xb and xc would be βb and βc respectively.

In equation (9), the regression prediction for each case is −1 + βb × xb + βc × xc.
However, if there are cases in the data for which this value is greater than 0, we should
expect the model estimates to be biased. This is what we set out to test. To control the
proportion of cases with predictions over zero, we varied the regression coefficients (see Table
3). Table 3 also includes the values for the minimum and maximum predicted probabilities.
These values are found through the following formula:
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For condition j

Min P = exp
(
− 1 + βb ×min(xb) + βc ×min(xc)

)
Max P = exp

(
− 1 + βb ×max(xb) + βc ×max(xc)

) , j = {1, 2, . . . , 6}

(10)

Using condition 6 in the Table as an example, the minimum probability was
e[−1+(0.5×0)+(1×−1)] = e−2 = 0.14, and the maximum probability was e[−1+(0.5×1)+(1×1)] =
e0.5 = 1.65. Consequently, we would expect the Poisson working model to return biased coef-
ficients in condition 6, indicated as problematic behaviour. For both Poisson and sequential
Poisson approaches, we applied HC4 standard errors.

Results

Study 1: Evaluating OLS and SLS when the linear probability model is true

We report the complete set of results in Appendix B. For the first four conditions in
Table 2, there were no predicted probabilities outside the unit interval, so OLS and SLS
were equivalent. The range of the coefficient bias was -0.0006 to 0.001. The range of the
empirical coverage rate of the 95% CI was 94.5% to 95.2%. Both of these results are adequate
suggesting that when there are no predicted probabilities exceeding the unit interval, OLS
estimation adequately recovers coefficients and we may proceed with statistical inference
using heteroskedasticity-consistent standard errors.

We report results for the binary variable when there were predicted probabilities outside
the unit interval, but the true coefficient of the binary variable was zero i.e. conditions 5
and 7. The range of bias under OLS and SLS was -0.005 to 0.0001 respectively. The range
of the empirical coverage rate of the 95% CI was 94.1% to 94.9%. These are small values of
bias, and acceptable empirical coverage rates.

We report the remaining results in Figure 3. SLS had acceptable relative bias and
empirical coverage rates across all (remaining) conditions. However, as the percentage of
fitted values outside the unit interval increased, the performance of OLS worsened. As
an extreme example, for conditions 7 and 8, the empirical coverage rate of OLS for the
continuous coefficient was 0%.

With these results, we find that the more extreme the proportion of cases with
predicted probabilities outside the unit interval, the greater the potential for inadequate
effect estimation and inference. In such situations, using sequential least squares to obtain
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Figure 3 . OLS and SLS were equivalent and performed adequately in conditions 1 to 4,
see Appendix B. Panel A: Average relative bias of coefficients of two estimation approaches
for the linear probability model. SLS coefficients always demonstrated acceptable levels
of relative bias, -5% < relative bias < 5%. Conditions 5 and 7 are missing for the binary
coefficient because the population parameters were zero, hence, it was impossible to calculate
relative bias. The bias of SLS under these conditions was negligible, see Appendix B. Panel
B: Empirical coverage rate of 95% confidence interval of two estimation approaches for the
linear probability model. SLS always maintained a reasonably good coverage rate, 92.5% <
ECR < 97.5%. The ECR of OLS in conditions 7 and 8 was 0%, see Appendix B.
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the risk difference can reduce the problems with using OLS. These results apply when the
LPM is true for the data.

Study 2: Evaluating the performance of the Poisson working model when the
Poisson working model is true

We report the complete set of results in Appendix B. For the first three conditions in
Table 3, there were no predicted probabilities above one, so Poisson and sequential Poisson
approaches were equivalent. The range of the coefficient bias was -0.004 to 0.003. The range
of the empirical coverage rate of the 95% CI was 94.9% to 95.3%. Both of these results
are adequate suggesting that when there are no predicted probabilities above one, Poisson
regression estimated using maximum likelihood adequately recovers coefficients and we may
proceed with statistical inference using heteroskedasticity-consistent standard errors.

We report results for the binary variable when there were predicted probabilities outside
the unit interval, but the true coefficient of the binary variable was zero i.e. condition 5. The
bias under Poisson and sequential Poisson approaches was 0.001 and -0.0001 respectively.
The empirical coverage rate of the 95% CI under Poisson and sequential Poisson approaches
was 95.0% and 94.9% respectively. These are small values of bias, and acceptable empirical
coverage rates.

Same as the contrast between OLS and SLS, the sequential Poisson approach performed
adequately in situations Poisson regression failed. We see this when we compare the methods
on the relative bias (see top panel of Figure 4) and the empirical coverage rate of the 95%
confidence interval (see bottom panel of Figure 4). And we reach the same conclusions:
the more extreme the proportion of cases with predicted probabilities greater than one,
the greater the potential for inadequate effect estimation and inference. In such situations,
estimating the (log-)risk ratio using a sequential Poisson approach can reduce some of the
problems with Poisson regression.

Data Demonstration

We use data from the Early Childhood Longitudinal Study − Kindergarten (ECLS-
K). The data are publicly available from the National Center for Educational Statistics
(https://nces.ed.gov/ecls). The ECLS-K data provide descriptive information on children’s
status at their entry into school and their transition through school. For our demonstration,
we focus on a subsample of 702 children whose proficiency levels have been previously
analyzed by O’Connell (2006). The children in the sample fell into three levels of reading

https://nces.ed.gov/ecls
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Figure 4 . Poisson and sequential Poisson were equivalent and performed adequately in
conditions 1 to 3, see Appendix B. Panel A: Average relative bias of coefficients of two
estimation approaches for the Poisson working model. Sequential Poisson coefficients always
demonstrated acceptable levels of relative bias, -5% < relative bias < 5%. Condition 5 is
missing for the binary coefficient because its population parameter was zero, hence, it was
impossible to calculate relative bias. The bias of sequential Poisson under this condition
was negligible, see Appendix B. Panel B: Empirical coverage rate of 95% confidence interval
of two estimation approaches for the linear probability model. Sequential Poisson always
maintained a reasonably good coverage rate, 92.5% < ECR < 97.5%.
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proficiency: can read words in context (level 5), can identify upper/lowercase letters (level
1), and children who did not pass level 1 proficiency (level 0) as of first grade. To create a
binary response variable, we grouped children in the last two categories together i.e., we
modeled the outcome with success as level 5 proficiency (n = 357) against failure as level 0
or 1 proficiency, n = 345.

As predictors of the outcome, we used the same variables as O’Connell (2006). Ac-
cording to O’Connell (2006), the selection of these predictors was based on the literature on
reading proficiency. The predictors are sex (0 = male, 1 = female), famrisk (risk factors,
0 = none, 1 = one or more), noreadbo (parent reads books to child at least three times
a week = 0, less than three times a week = 1), halfdayK (0 = child attended full-day
kindergarten, 1 = child attended half-day kindergarten), center (whether or not child ever
received center-based day care prior to attending kindergarten; 0 = no, 1 = yes), minority
(0 = white/Caucasian background, 1 = other background), wksesl (family SES assessed
prior to kindergarten, range of −4.18 to 2.64), and p1ageent_66 (age of child in months at
kindergarten entry centered at the median of 66 months, range of −9 to 13).

To model the outcome, we used logistic regression, OLS and the Poisson working
model. As there were predicted probabilities outside the unit interval for both OLS and the
Poisson working model, we also applied the sequential approaches. For all models except the
logistic regression model, we used heteroskedasticity-consistent standard errors. We report
model results in Table 3.

First, we note that the pattern of statistical significance was relatively similar across
models. We expect this finding to hold in most applications at large enough sample sizes.
Next, sequential least squares and Poisson working models had sample sizes that were 21%
and 24% lower than the total sample size. This might be of concern to applied researchers.
Based on our simulation results, this is the price we have to pay to obtain less biased
estimates of the RD and RR assuming the linear probability or Poisson working model is
true. Additionally, for female and wksesl, the effects from the sequential approaches are
substantially larger than the effects from the standard OLS and Poisson approaches.

To better understand these models in this empirical example, we produce a coun-
terfactual plot (Gelman & Hill, 2007, Chapter 9; McElreath, 2015, Section 5.1.3.2) of the
model-implied effect of wksesl on the probability of success for each of these models. To
do this, we generate a new dataset of the same sample size as the original data, with all
predictors except wksesl set to their median value, and we retained the original values of
wksesl. This allowed us to explore the relationship between wksesl and the probability of
success implied by these models for a child with the following characteristics: female =
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Table 4
Analysis of dichotomized reading proficiency

Outcome variable: Reading proficiency
Logistic OLS SLS Poisson Seq-Poisson

female 0.83 0.13 0.18 0.29 0.44
(0.20)∗∗∗ (0.03)∗∗∗ (0.04)∗∗∗ (0.06)∗∗∗ (0.10)∗∗∗

famrisk −0.61 −0.11 −0.11 −0.35 −0.37
(0.22)∗∗ (0.04)∗∗ (0.04)∗∗ (0.10)∗∗∗ (0.12)∗∗

center 0.21 0.04 0.04 0.10 0.12
(0.24) (0.04) (0.05) (0.10) (0.12)

noreadbo −0.74 −0.13 −0.14 −0.48 −0.46
(0.28)∗∗ (0.04)∗∗ (0.05)∗∗ (0.17)∗∗ (0.17)∗∗

minority −0.20 −0.04 −0.04 −0.12 −0.15
(0.21) (0.03) (0.04) (0.07) (0.11)

halfdayK 0.04 0.01 0.02 0.04 0.08
(0.20) (0.03) (0.04) (0.06) (0.10)

wksesl 1.72 0.25 0.35 0.48 0.91
(0.17)∗∗∗ (0.02)∗∗∗ (0.03)∗∗∗ (0.04)∗∗∗ (0.10)∗∗∗

p1ageent_66 0.09 0.01 0.02 0.03 0.04
(0.02)∗∗∗ (0.004)∗∗∗ (0.005)∗∗∗ (0.01)∗∗∗ (0.01)∗∗∗

Constant −0.34 0.46 0.42 −0.93 −1.02
(0.29) (0.05)∗∗∗ (0.05)∗∗∗ (0.11)∗∗∗ (0.15)∗∗∗

Observations 702 702 556 702 533

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Standard errors for the linear and Poisson models are HC4
robust standard errors.

0, famrisk = 0, center = 1, noreadbo = 0, minority = 0, halfdayK = 0, p1ageent_66 =
0. We used the regression equations together with the mean functions to calculate the
predicted probabilities, and we left and right censored the predicted probabilities at 0 and 1
respectively.

From the plot in Figure 5, we find that the sequential approaches better approximate
the logistic curve compared to the standard approaches. Moreover, the RD from SLS
approximates the linear effect of wksesl on the probability of success in the region where
wksesl influences the probability of success. One can make the same comment about the
sequential Poisson working model; the implied RR conveys the multiplicative effect of wksesl
on the probability of success in the region where wksesl influences the probability of success.
This examination alongside the simulation results suggest that for the RD and RR, we
interpret the results from the sequential approaches despite the drop in sample size.

As examples, we interpret the coefficients for female and wksesl. If they were similar
on all other predictors, female children had an average odds of success that was 2.29 (e0.83)
times the odds of success for male children. In terms of the RD, the female children were on
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Figure 5 . Relationship between family SES and predicted probabilities under different
approaches holding all other predictors at their median values. The standard approach
for the RD and RR are OLS and the Poisson working model respectively. The sequential
approaches are the modifications to these standard approaches.

average 18% points more likely to succeed than their male counterparts. In terms of the RR,
the female children were on average 55%

(
(e0.44 − 1)× 100%

)
more likely to succeed than

their male counterparts. If children were similar on all other predictors, but they differed
in family SES by one point, then the higher SES children had an average odds of success
that was 5.58 (e1.72) times the odds of success of the lower SES children. In terms of the
RD, the higher SES children were on average 35% points more likely to succeed than the
lower SES children. In terms of the RR, the higher SES children were on average 148%(
(e0.91 − 1)× 100%

)
more likely to succeed than the lower SES children.

Discussion

We have made the case that the odds ratio is not comparable across models and in
particular, across studies. A question that follows is: are meta-analyses of odds ratios of
value? Although we have presented methods for calculating effect sizes that are comparable
across studies, we think that there remains value to meta-analysis of odds ratios. It is
important to note that the log odds ratio of a variable that is unconfounded with other
determinants of the outcome is deflated towards zero. So a meta-analysis of the odds
ratios from well-executed randomized trials will be conservative. Moreover, the lack of
comparability does not affect the sign of odds ratios. If a meta-analysis provides evidence
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for an average odds ratio above 1 (or a positive log odds ratio), our arguments about
the comparability of odds ratios do not provide reasons to doubt the findings from the
meta-analysis.

In relation to the sequential least squares and Poisson approaches we have presented in
this paper, we recommend them as additional tools for the data analyst during the analysis
of binary response variables. Our work here does not discourage the use of logistic regression.
The alternative regression approaches provide effect sizes that are comparable across models
and are useful for comparing the effect of variables of interest across studies. Hence, alongside
the odds ratios that are presented with standard logistic regression results, we recommend
the inclusion of at least one other effect size measure that can be included in a comparision
of effects from different studies. We also advise that researchers produce the counterfactual
plots implied by the different modeling approaches for predictors of interest, as demonstrated
in the real data example. We expect that in many applications, this practice will facilitate
the understanding and interpretation of the effects communicated by the coefficients from
different models. For example, practitioners can check how well an SLS estimate matches
the linear approximation to the relationship implied by the logistic regression.

Some practitioners may have reservations about having to delete portions of their data
to obtain effect size estimates. We note that such data modifications have a long history
in statistical practice. For example, popular forms of robust (to outliers) regression use
estimators that weight cases depending on how “extreme” the cases are (Faraway, 2002,
Chapter 13). If a case is extreme enough, its weight can become zero effectively deleting
the case. Additionally, data modification in the form of winsorizing and discarding data in
the form of trimming to compute effect sizes are common methodological recommendations
that go as far back as Tukey (1962), with a more recent example in Algina, Keselman, and
Penfield (2005).6 There is also the practice of data augmentation where practitioners add
cases to their data to improve the statistical properties of estimators, e.g. Greenland and
Mansournia (2015). These are some examples that demonstrate the history of modifying
the data during analysis, when the practice is justifiable. In our particular situation, we
repeatedly delete cases with predictions outside the unit interval because we assume that
their predicted values are known. If their predicted probabilities are under zero/above one,
then the predicted probabilities are zero or one. And given the estimation methods of least
squares and maximum likelihood, using such cases to estimate the regression coefficients
will bias estimation, justifying their exclusion.

The major design consideration for the simulation we conducted was the degree to which

6A very common example is the median; it is the trimmed mean with 50% − 1 of data points discarded
from each tail (Velleman & Wilkinson, 1993).
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the true fitted values resulted in probabilities on the unit interval. Within the simulation that
followed from this design consideration, we found that the sequential approaches had good
parameter recovery and empirical coverage rates when compared to the standard approaches.
We welcome more thorough methodological examination via simulation, and mention a
few relevant design considerations for such a simulation study. The sequential approaches
we recommend rely on case deletion, and case deletion can lead to consequential drops
in power and estimation efficiency especially at smaller sample sizes. A similar challenge
occurs when group membership is highly unbalanced. Case deletion might lead to the loss
of a consequential number of cases within a group with a small sample size even when the
total sample size is barely affected. This loss of cases would compromise the power and
efficiency of interactions. Given the aforementioned, a more comprehensive study of the
recommended sequential methods should include sample size and degree of group balance
as deisgn considerations. Additionally, the rate of the outcome impacts case deletion. For
very low rate outcomes, SLS may suffer significant loss of cases. While for very high rate
outcomes, both SLS and sequential Poisson approaches may suffer significant loss of cases.
Hence, the rate of the outcome should be an additional design consideration. Our data
generation processes are flexible enough to accommodate these design considerations.7

Finally, hierarchical data structures are commonplace in educational data. These
hierarchies and grouping structures can lead to violation of the independence assumption
of generalized linear models. This fact partially accounts for the popularity of multilevel
regression methods in educational research (McNeish, Stapleton, & Silverman, 2017). The
reader should note that the problems we have documented about comparability of odds ratios
across models and studies also apply to multilevel logistic regression for binary outcomes.
In the future, we intend to investigate possible approaches to fitting multilevel linear and
Poisson models that may help with the estimation of the risk difference and risk ratio when
the data are multilevel.

7The binary variable, xb, was generated as Bernoulli with a probability of success equal to 0.5. Varying
this probability will result in unbalanced group sizes. Also, one can manipulate the intercept in both data
generation processes to arrive at different outcome rates.
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Appendix A
Derivations for linear probability and Poisson working models

All that is required to follow the derivations are familiarility with common probability
distributions, and basic algebra. For formulas for the distribution functions, we use Krish-
namoorthy (2006).

Derivation for linear probability model

We note that the derivation presented here is an old finding, see Olsen (1980), Amemiya
(1981), Horrace & Oaxaca (2006). The key question of interest in regression models for binary
response variables is: what are the probabilities of success underlying a binary response
variable, y, given k predictors in X, i.e., P (y = 1|X)? y ∈ {0, 1} for n cases, and X is an
n× k matrix.

P (y = 1|X) = P (Xβ + υ > τ |X) using a latent variable formulation for y
= P (υ > τ −Xβ|X) = 1− P (υ < τ −Xβ|X)

(11)

where β are the k regression coefficients, τ is the dichotomization threshold, and υ is
the error term. For model identification, we set τ = 0.5, such that the last line of equation
(11) becomes 1− P (υ < 0.5−Xβ|X). Finally, we assume υ ∼ unif(−0.5, 0.5).

Selecting unif(−0.5, 0.5) as the distribution for υ means that P (υ < 0.5−Xβ) is the
distribution function of unif(−0.5, 0.5) evaluated at 0.5−Xβ. Hence, based on the uniform
distribution function:

P (υ < 0.5−Xβ) =


0, if 0.5−Xβ < −0.5
(0.5−Xβ)−(−0.5)

0.5−(−0.5) , if 0.5−Xβ ∈ [−0.5, 0.5)
1, if 0.5−Xβ ≥ 0.5

=


0, if Xβ > 1
1−Xβ, if Xβ ∈ (0, 1]
1, if Xβ ≤ 0

(12)

Since P (y = 1|X) = 1− P (υ < 0.5−Xβ), then:

P (y = 1|X) =


1, if Xβ > 1
Xβ, if Xβ ∈ (0, 1]
0, if Xβ ≤ 0

(13)

OLS estimates Xβ without respect for the bounds, hence the expectation for the
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regression error term, ε, is:

E(ε|X) = P (y = 1|X)−Xβ =


1−Xβ, if Xβ > 1
0, if Xβ ∈ (0, 1]
0−Xβ, if Xβ ≤ 0

(14)

E(ε|X) = 0, the zero conditional mean assumption for unbiased estimation with OLS
(Wooldridge, 2010, p. 50), is only met when all values in Xβ are in [0, 1].

Derivation for Poisson working model

We have yet to see this derivation presented elsewhere in the literature on binary
response models. The key question of interest is: P (y = 1|X)? From equation (11), we
know that: P (y = 1|X) = 1−P (υ < τ −Xβ|X). For model identification, we set threshold,
τ = −1, such that the right hand side of the equation becomes 1− P (υ < −1−Xβ|X). We
assume the error term plus 1 is exponential with a scale parameter of 1, υ + 1 ∼ exp(1).
Adding 1 to the error term ensures mean(υ) = 0 since mean(exp(1)) = 1. If we increment υ
by 1, then we must increment the RHS of the equation:

P (y = 1|X) = 1− P (υ + 1 < −1−Xβ + 1|X) = 1− P (υ + 1 < −Xβ|X) (15)

Based on the exponential distribution function with scale parameter of 1:

P (υ + 1 < −Xβ|X) =
{

0, if −Xβ < 0
1− e−(−Xβ), if −Xβ ∈ [0,∞)

=
{

0, if Xβ > 0
1− eXβ, if Xβ ∈ (−∞, 0]

(16)

From equation (15), P (y = 1|X) = 1− P (υ + 1 < −Xβ|X), then:

P (y = 1|X) =
{

1, if Xβ > 0
eXβ, if Xβ ∈ (−∞, 0]

(17)

Poisson regression estimates eXβ without respect for the zero upper bound, hence the
expectation for the regression error term, ε, is:

E(ε|X) = P (y = 1|X)− eXβ =
{

1− eXβ, if Xβ > 0
0, if Xβ ∈ (−∞, 0]

(18)
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E(ε|X) = 0, the zero conditional mean assumption for unbiased estimation with
Poisson regression, is only met when all values in Xβ are in (−∞, 0].

Appendix B
Complete simulation results for linear probability model and Poisson working model

Table B1
Complete results for simulation comparing OLS and SLS when both predictors have a
correlation of 0.3

True coefficients Binary Continuous

Condition Binary Continuous % outside 0-1 Model Bias ECR Bias ECR

1 0 0 0.0% Both 0.000 94.5% 0.001 94.8%
2 0.1 0 0.0% Both 0.000 94.9% 0.001 95.0%
3 0 0.25 0.0% Both 0.000 95.2% 0.000 94.8%
4 0.1 0.25 0.0% Both 0.000 95.0% -0.001 94.8%
5 0 0.5 2.6% OLS 0.000 94.9% 0.000 94.5%
5 SLS 0.000 94.5% 0.004 93.8%
6 0.1 0.5 7.4% OLS -0.006 94.2% -0.010 94.0%
6 SLS 0.000 94.2% 0.005 94.0%
7 0 0.75 21.7% OLS -0.005 94.5% -0.110 0.0%
7 SLS -0.001 94.1% 0.013 93.7%
8 0.1 0.75 21.8% OLS -0.034 81.3% -0.128 0.0%
8 SLS 0.001 94.7% 0.014 93.0%

Table B2
Complete results for simulation comparing Poisson and sequential Poisson when both predictors
have a correlation of 0.3

True coefficients Binary Continuous

Condition Binary Continuous % outside 0-1 Model Bias ECR Bias ECR

1 0 0 0.0% Both -0.004 95.3% 0.002 94.9%
2 0.5 0 0.0% Both 0.003 95.0% 0.001 95.0%
3 0 0.5 0.0% Both 0.002 95.0% 0.000 95.1%
4 0.5 0.5 1.5% Poisson 0.004 94.7% 0.000 94.8%
4 Seq. Poisson 0.007 94.5% 0.006 94.1%
5 0 1 1.3% Poisson 0.001 95.0% 0.004 95.1%
5 Seq. Poisson 0.000 94.9% 0.012 94.8%
6 0.5 1 11.5% Poisson -0.089 79.5% -0.160 45.6%
6 Seq. Poisson 0.008 94.8% 0.018 93.6%
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